
Authentication and Authorization
for Web Applications

Secure your web app with  
JSON Web Tokens

Agenda

The Demo Application
JSON Web Token Basics
JSON Web Tokens and Single Page Apps
Implementing Authentication with JSON Web Tokens
Client Side Sessions
User Information in the Payload
Protecting Resources
Protecting Routes

Getting Started

https://github.com/chenkie/angular2-user-authentication

BONUS
https://github.com/chenkie/angular1-user-authentication

https://github.com/chenkie/react-user-authentication

https://github.com/chenkie/angular2-user-authentication
https://github.com/chenkie/angular1-user-authentication
https://github.com/chenkie/react-user-authentication

https://github.com/chenkie/user-authentication-api

https://user-authentication-api-ocokqryugz.now.sh/api

The Demo API

• Simple REST API that allows users to sign up and log in
• When a user is authenticated, a JSON Web Token is returned in the

response
• The API has a resource called instructors which is a listing of several

Front End Masters instructors

The Demo Front End App

• The demo app is provided in three varieties: Angular 1.5, Angular 2, and
React

• The front end app that we’ll work on will allow users to sign up or log in,
view their profile, request a listing of instructors and add new instructors

• To view the profile area and list of instructors, users will need to be logged
in

• To add new instructors, users will need to be an administrator

Challenges

• Run the finished app (in the framework of your choosing)
• Access the API and view the documentation for its endpoints in the
readme: https://github.com/chenkie/user-authentication-api

• If you want to, clone and run the API locally (make sure to read the
instructions)

• Optional: create a user for yourself at the /api/users endpoint from
Postman

https://github.com/chenkie/user-authentication-api

JSON Web Token Basics

What is a JSON Web Token (JWT)?

• An open standard: RFC 7519
• A method for transferring claims (assertions) between two parties securely

through a JSON payload
• A digitally signed and compact, self-contained package
• A great mechanism for stateless authentication

Basic JWT
eyJhbGciOiJIUzI1NiIs
InR5cCI6IkpXVCJ9.eyJ
zdWIiOiIxMjM0NTY3ODk
wIiwibmFtZSI6IkpvaG4
gRG9lIiwiYWRtaW4iOnR
ydWV9.TJVA95OrM7E2cB
ab30RMHrHDcEfxjoYZge
FONFh7HgQ

{
 "alg": "HS256",
 "typ": "JWT"
}

{
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true
}

HMACSHA256(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 <secret>
)

Header

Payload

Signature

JWT Header

• JSON object that describes the token
• At a minimum it should include the token type and signing algorithm
• The signing algorithm is necessary for the token to be verified
• Commonly tokens are signed with HS256 (symmetric) or RS256

(asymmetric)
• Header example:

{
 "alg": "HS256",
 "typ": "JWT"
}

JWT Payload

• JSON object which contains any claims (assertions) about the entity for
which it was issued

• The JWT standard describes a set of reserved claims
•iss, sub, aud, exp, nbf, iat, jti

• The payload can also contain any arbitrary claims defined at will

{
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true
}

JWT Signature

• JSON object produced by Base64 URL encoding the header and payload
and then running them through a hashing algorithm with a secret key

• The signature is used as a means to digitally sign the token so that its
validity can be verified later

• If anything in the header or payload is modified, the token will be
invalidated

HMACSHA256(
 base64UrlEncode(header) +
"." +
 base64UrlEncode(payload),
 <secret>
)

JSON Web Tokens
and Single Page Apps

Traditional Client-Server Interactions
Were Straightforward

Request

Response

Modern Interactions are
More Complex

Request

Response

Traditional Authentication

• The user submits their credentials
which are checked against a database

• If everything is good, a session is
created for them on the server, and a
cookie with a session_id is sent back
to the browser

• The cookie is sent back to the server on
all subsequent requests and is verified
against the session

✓ Session Created

✓ Cookie Saved

Traditional Authentication Example

Downsides to Cookie/Session Auth

• Since the SPA doesn’t refresh, how does it know that the user is logged in?
• Traditional apps construct views on the backend which is where auth can be

checked
• How do SPAs get their data? Generally a REST API

• REST APIs should be stateless and traditional authentication is stateful

Let’s explore some problems with traditional authentication in SPAs

Downsides to Cookie/Session Auth

• Modern architecture relies on micro services and downstream servers but
cookies don’t flow downstream
• Can’t communicate easily between multiple servers with traditional auth

• Access control requires database queries
• General chattiness on the backend

• Doesn’t scale well and can become memory-intensive
• In traditional authentication, the server does the heavy lifting

JWT Authentication

• The user submits their credentials which
are checked against a database

• If everything is good, a token is signed
and returned to the client in the response

• The token is saved on the client, usually
in web storage or in a cookie

• The token is sent as an
Authorization header on every HTTP
request

✓ Token Signed

✓ Token Saved

JWT Authentication

• When the request is received on the
backend, the JWT is verified against the
secret that only the server knows

• The payload is checked to route the
request based on the JWT’s claims
(usually with middleware)

• If the JWT is valid, the requested
resource is returned

• If it is invalid, a 401 is returned

✓ Token Signed

✓ Token Saved

How Does This Help?

• The SPA no longer relies on the backend to tell it whether the user is
authenticated

• The backend can receive requests from multiple clients and the backend only
cares that the token is valid

• Requests can flow to downstream servers if necessary
• The client tells the backend what is permissible instead of asking

• No need for user access lookups

Quick Exercise: Try it out with jwt.io

http://jwt.io

Implementing Authentication
with JSON Web Tokens

How Does the SPA Get a JWT?

• The user submits their credentials
• If the credentials are valid, a JWT is signed and returned in the response
• A secret key (only known by the server) is used to sign the JWT

Exploring the
JWT Signing Code

JWT Storage

• Once the JWT comes back, it needs to be stored somewhere in the user’s
browser

• Storing it in memory isn’t great because it will be lost when the page is
refreshed

• JWTs are typically stored in browser storage (local storage or session
storage) or in HTTP-only cookies

import { Http } from '@angular/http'; 
 
export class LoginComponent implements OnInit {

 constructor(private http: Http) {}

 login(credentials) {
this.http.post(API, credentials)
 .map(response => response.json())
 .subscribe(data => localStorage.setItem(‘token’, data.token));

 }
}

Challenges

• Create a screen for login and signup
• Make a POST request with the user’s credentials
• Store the JWT that comes back in local storage
• Create a logout method which removes the token from local storage
• Provide buttons for Log In and Log Out in the home view and the toolbar

Client Side Sessions

About Sessions

• What is a session?
• In general terms, a session is a way to preserve a desired state

• What is a server-side session?
• It’s a piece of data stored in memory on the server (or in a database) that

tracks information
• For authentication, this generally means an identifier for the user
• Ultimately it is used to make a determination about the user’s

authentication status
• Keeping server-side sessions in this way is stateful

About Sessions

• What is a client-side session?
• SPAs require a way to know whether a user is authenticated or not
• Can’t be done in a traditional manner because the SPA is largely

decoupled from the backend
• JWT is a stateless authentication mechanism, which means no user

session exists on the server anyway

Client Sessions

• How can we have client sessions using a stateless authentication
mechanism?
• The best indication we can go by is whether or not the user’s JWT has

expired

• Rationale
• If the JWT has expired, it can’t be used to access protected resources
• Since authentication in this scenario is broadly concerned with protecting

resources, it can be used as an indicator of authentication state

Client Sessions

• When the user logs in, provide an application-wide flag to indicate the user
is logged in

• At any point in the application’s lifecycle, the token’s exp value can be
checked against the current time

• If the token expires, change the flag to indicate the user is logged-out
• The check is commonly done when a route change occurs

• If the token is expired, redirect the user to the login route
• Toggle appropriate markup for the user being logged out

 <div *ngIf=“isAuthenticated”>
 <p> Welcome, {{ name }}!
 View your profile or
 log out.
 </p>
</div>

 <div *ngIf=“!isAuthenticated”>
 <p> Welcome! Please log in.</p>
</div>

Challenges

• Implement a function which uses the JWT’s expiry time to check whether
the user is authenticated
• Hint: there are libraries to help!

• Conditionally hide and show elements based on authentication state

User Information in the Payload

Payload Refresher

• The JWT’s payload contains claims which are assertions about a subject
• We can assert various things about a user

• Name
• Email
• Picture

Payload Best Practices

• It might be tempting to put a whole profile object in the payload, but we
shouldn’t do this

• It’s important to keep the JWT small because it is sent over the wire on all
requests

• Since the JWT is decodable, we want to keep sensitive information out

Payload Best Practices

• What should be in the payload?
• Basic user information
• Nothing secret or sensitive

• Consider providing a separate endpoint which retrieves a user profile
object if you need a lot of profile data

Challenges

• Read the user’s profile out of the JWT payload
• Hint: there are libraries to help!

• Display the user’s details in a profile view

Protecting Resources

Protecting Resources

• The point of adding authentication to an app is to restrict resource access
to users who have proven they are allowed to access those resources

• Different levels of access
• Publicly accessible — data is open to anyone
• Limited to authenticated users — data is open to anyone who is logged in
• Limited to only one authenticated user — data is open to only the user

who is logged in
• Limited to a subset of authenticated users — data is open to anyone of a

particular privilege

Protecting Resources

• How do JWTs help us to protect resources?
• We can create endpoints for our resources that require an authentication

check
• To pass the check, a valid JWT must be present
• When making HTTP requests, we can send the JWT as an
Authorization header

• The header is read at the API and if it’s valid, the resource is accessible

Exploring the
JWT Middleware Code

Making Authenticated Requests

• Sending authenticated requests requires retrieving the JWT from storage
and attaching it as an Authorization header.

• Some common ways this is implemented include:
• Explicitly on a per-request basis
• Globally on all requests
• Only requests of a certain kind (method and resource type)

• Storing JWT in a Cookie means that it goes to the server on every request

this.http.get(API_URL, headers: { ‘Authorization’: ‘Bearer ‘ + token })
 .map(res => res.json())
 .subscribe(data => console.log(data));

Authorization Schemes

• There are various schemes registered for the Authorization header
• The Bearer scheme is borrowed from OAuth 2.0
• Other common schemes include Basic and Digest

Challenges

• Set up the application to send the JWT in an Authorization header
when needed

• Make a GET request to the API for the instructors resource and display
the list in the app

• Make a POST request to the API to add a new instructor
• Hint: there are libraries to help!

Protecting Routes

Client-Side Considerations

• Server resources are limited to only requests which have a valid JWT
• But what about limiting access on the client side?
• Some client side considerations:

• Users should only be able to navigate to protected routes if they are
authenticated

• If a route requires a certain access level, users should only be able to
navigate there if they have the appropriate scope

• Certain UI elements should only be rendered if the above conditions are
met

Protecting Routes

• However, protecting client side routes and UI elements has a big problem:
it’s easy to forge
• The user can modify the exp time or scope in their own JWT
• We can’t verify the signature of the JWT on the client side because the

secret can never leave the server

Protecting Routes

• But does it matter?
• In the end, protected resources should remain on the server anyway

• Anything in the client-side is easily visible by anyone who can use dev
tools

• If a savvy user manages to hack their way to a protected route (either by
modifying their JWT or otherwise tampering with the code), they won’t be
able to get the resources from the server

Scenario: Savvy User Modifies the JWT

• We use JavaScript to limit a route to authenticated users who also have a
scope of admin

• A savvy user who only has a scope of user decides to modify their JWT in
the jwt.io debugger

• They gain access to the route which is populated by resources from the
server

• What happens?

http://jwt.io

Request with Invalid JWT

How are Client-Side Routes Protected?

• When a route transition starts, the exp time in the JWT payload is checked
• If the JWT is expired, the transition is disallowed

• If a route requires a certain access level, the scope in the JWT is checked
when the route transition starts
• If the JWT doesn’t include the desired scope, the transition is disallowed

Details Differ by Framework

• Many frameworks have their implementations for controlling route access
• Angular 1.x - router events ($routeChangeStart,
$stateChangeStart)

• Angular 2 - route guards which implement a CanActivate hook
• React (React Router) - onEnter event

export class AuthGuard implements CanActivate {

 constructor(private auth: AuthService, private router: Router) {}

 canActivate() {
 if (this.auth.isAuthenticated()) {
 return true;
 } else {
 this.router.navigate([‘login’]);
 }
 }
}

Challenges

• For the instructor route, check that the user’s JWT is unexpired before
the route transition happens

• For the instructor/new route, check that the user’s JWT is unexpired
and that they have a scope of admin

• Hide the New Instructor button if the user isn’t an admin

Further Reading & Wrap-Up

Important Considerations

• Nothing is 100% secure and JWTs are no exception
• Common attack vectors:

• XSS (if using local storage)
• CSRF (if using cookies)
• MITM attacks

• Always serve your app and API over HTTPS
• Always escape user input and put CSRF protection in place if necessary

Important Considerations

• JWT describes how computers can communicate securely between one
another but it doesn’t say anything about how suitable your own
implementation might be

• It’s up to you to make a determination about whether your implementation
is secure

• OAuth 2.0 and OIDC standardize authentication and authorization
• While complex, they may be the best solution in some scenarios

Further Reading

• Auth0 Blog: https://auth0.com/blog
• JWT Standard (RFC 7519): https://tools.ietf.org/html/rfc7519
• OAuth 2.0 Framework (RFC 6749): https://tools.ietf.org/html/rfc6749
• OpenID Connect: https://openid.net/connect/

https://auth0.com/blog
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6749
https://openid.net/connect/

WE YOU!

@ryanchenkie
@simpulton

Thanks!

