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Getting Started



https://github.com/chenkie/angular2-user-authentication 

BONUS 
https://github.com/chenkie/angular1-user-authentication 

https://github.com/chenkie/react-user-authentication 

https://github.com/chenkie/angular2-user-authentication
https://github.com/chenkie/angular1-user-authentication
https://github.com/chenkie/react-user-authentication


https://github.com/chenkie/user-authentication-api 



https://user-authentication-api-ocokqryugz.now.sh/api 





The Demo API

• Simple REST API that allows users to sign up and log in 
• When a user is authenticated, a JSON Web Token is returned in the 

response 
• The API has a resource called instructors which is a listing of several 

Front End Masters instructors



The Demo Front End App

• The demo app is provided in three varieties: Angular 1.5, Angular 2, and 
React 

• The front end app that we’ll work on will allow users to sign up or log in, 
view their profile, request a listing of instructors and add new instructors 

• To view the profile area and list of instructors, users will need to be logged 
in 

• To add new instructors, users will need to be an administrator



Challenges

• Run the finished app (in the framework of your choosing) 
• Access the API and view the documentation for its endpoints in the 
readme: https://github.com/chenkie/user-authentication-api 

• If you want to, clone and run the API locally (make sure to read the 
instructions) 

• Optional: create a user for yourself at the /api/users endpoint from 
Postman

https://github.com/chenkie/user-authentication-api


JSON Web Token Basics



What is a JSON Web Token (JWT)?

• An open standard: RFC 7519 
• A method for transferring claims (assertions) between two parties securely 

through a JSON payload 
• A digitally signed and compact, self-contained package 
• A great mechanism for stateless authentication



Basic JWT
eyJhbGciOiJIUzI1NiIs
InR5cCI6IkpXVCJ9.eyJ
zdWIiOiIxMjM0NTY3ODk
wIiwibmFtZSI6IkpvaG4
gRG9lIiwiYWRtaW4iOnR
ydWV9.TJVA95OrM7E2cB
ab30RMHrHDcEfxjoYZge
FONFh7HgQ

{
  "alg": "HS256",
  "typ": "JWT"
}

{
  "sub": "1234567890",
  "name": "John Doe",
  "admin": true
}

HMACSHA256(
  base64UrlEncode(header) + "." +
  base64UrlEncode(payload),
  <secret>
)

Header 

Payload 

Signature 



JWT Header

• JSON object that describes the token 
• At a minimum it should include the token type and signing algorithm 
• The signing algorithm is necessary for the token to be verified 
• Commonly tokens are signed with HS256 (symmetric) or RS256 

(asymmetric) 
• Header example: 

{
  "alg": "HS256",
  "typ": "JWT"
}



JWT Payload

• JSON object which contains any claims (assertions) about the entity for 
which it was issued 

• The JWT standard describes a set of reserved claims 
•iss, sub, aud, exp, nbf, iat, jti

• The payload can also contain any arbitrary claims defined at will

{ 
  "sub": "1234567890", 
  "name": "John Doe", 
  "admin": true 
}



JWT Signature

• JSON object produced by Base64 URL encoding the header and payload 
and then running them through a hashing algorithm with a secret key 

• The signature is used as a means to digitally sign the token so that its 
validity can be verified later 

• If anything in the header or payload is modified, the token will be 
invalidated

HMACSHA256(
  base64UrlEncode(header) + 
"." +
  base64UrlEncode(payload),
  <secret>
)



JSON Web Tokens  
and Single Page Apps



Traditional Client-Server Interactions 
Were Straightforward

Request

Response



Modern Interactions are  
More Complex

Request

Response



Traditional Authentication

• The user submits their credentials 
which are checked against a database 

• If everything is good, a session is 
created for them on the server, and a 
cookie with a session_id is sent back 
to the browser 

• The cookie is sent back to the server on 
all subsequent requests and is verified 
against the session

✓ Session Created

✓ Cookie Saved



Traditional Authentication Example



Downsides to Cookie/Session Auth

• Since the SPA doesn’t refresh, how does it know that the user is logged in? 
• Traditional apps construct views on the backend which is where auth can be 

checked 
• How do SPAs get their data? Generally a REST API 

• REST APIs should be stateless and traditional authentication is stateful

Let’s explore some problems with traditional authentication in SPAs



Downsides to Cookie/Session Auth

• Modern architecture relies on micro services and downstream servers but 
cookies don’t flow downstream 
• Can’t communicate easily between multiple servers with traditional auth 

• Access control requires database queries 
• General chattiness on the backend 

• Doesn’t scale well and can become memory-intensive 
• In traditional authentication, the server does the heavy lifting



JWT Authentication

• The user submits their credentials which 
are checked against a database 

• If everything is good, a token is signed 
and returned to the client in the response 

• The token is saved on the client, usually 
in web storage or in a cookie 

• The token is sent as an 
Authorization header on every HTTP 
request

✓ Token Signed

✓ Token Saved



JWT Authentication

• When the request is received on the 
backend, the JWT is verified against the 
secret that only the server knows 

• The payload is checked to route the 
request based on the JWT’s claims 
(usually with middleware) 

• If the JWT is valid, the requested 
resource is returned 

• If it is invalid, a 401 is returned

✓ Token Signed

✓ Token Saved



How Does This Help?

• The SPA no longer relies on the backend to tell it whether the user is 
authenticated 

• The backend can receive requests from multiple clients and the backend only 
cares that the token is valid 

• Requests can flow to downstream servers if necessary 
• The client tells the backend what is permissible instead of asking 

• No need for user access lookups



Quick Exercise:  Try it out with jwt.io

http://jwt.io


Implementing Authentication 
with JSON Web Tokens



How Does the SPA Get a JWT?

• The user submits their credentials 
• If the credentials are valid, a JWT is signed and returned in the response 
• A secret key (only known by the server) is used to sign the JWT



Exploring the  
JWT Signing Code



JWT Storage

• Once the JWT comes back, it needs to be stored somewhere in the user’s 
browser 

• Storing it in memory isn’t great because it will be lost when the page is 
refreshed 

• JWTs are typically stored in browser storage (local storage or session 
storage) or in HTTP-only cookies



import { Http } from '@angular/http'; 
 
export class LoginComponent implements OnInit { 

  constructor(private http: Http) {} 

  login(credentials) { 
this.http.post(API, credentials) 
  .map(response => response.json()) 
  .subscribe(data => localStorage.setItem(‘token’, data.token)); 

  } 
}



Challenges

• Create a screen for login and signup 
• Make a POST request with the user’s credentials  
• Store the JWT that comes back in local storage 
• Create a logout method which removes the token from local storage 
• Provide buttons for Log In and Log Out in the home view and the toolbar



Client Side Sessions



About Sessions

• What is a session? 
• In general terms, a session is a way to preserve a desired state 

• What is a server-side session? 
• It’s a piece of data stored in memory on the server (or in a database) that 

tracks information 
• For authentication, this generally means an identifier for the user 
• Ultimately it is used to make a determination about the user’s 

authentication status 
• Keeping server-side sessions in this way is stateful



About Sessions

• What is a client-side session? 
• SPAs require a way to know whether a user is authenticated or not 
• Can’t be done in a traditional manner because the SPA is largely 

decoupled from the backend 
• JWT is a stateless authentication mechanism, which means no user 

session exists on the server anyway



Client Sessions

• How can we have client sessions using a stateless authentication 
mechanism? 
• The best indication we can go by is whether or not the user’s JWT has 

expired 

• Rationale 
• If the JWT has expired, it can’t be used to access protected resources 
• Since authentication in this scenario is broadly concerned with protecting 

resources, it can be used as an indicator of authentication state



Client Sessions

• When the user logs in, provide an application-wide flag to indicate the user 
is logged in 

• At any point in the application’s lifecycle, the token’s exp value can be 
checked against the current time 

• If the token expires, change the flag to indicate the user is logged-out 
• The check is commonly done when a route change occurs 

• If the token is expired, redirect the user to the login route 
• Toggle appropriate markup for the user being logged out



  
 <div *ngIf=“isAuthenticated”> 
   <p> Welcome, {{ name }}!  
    View your <a href=“/profile”>profile</a> or  
    <a routerLink=“/logout”>log out</a>. 
  </p> 
</div>

  
 <div *ngIf=“!isAuthenticated”> 
   <p> Welcome! Please <a routerLink=“/login”>log in</a>.</p> 
</div>



Challenges

• Implement a function which uses the JWT’s expiry time to check whether 
the user is authenticated 
• Hint: there are libraries to help! 

• Conditionally hide and show elements based on authentication state



User Information in the Payload



Payload Refresher

• The JWT’s payload contains claims which are assertions about a subject 
• We can assert various things about a user 

• Name 
• Email 
• Picture



Payload Best Practices

• It might be tempting to put a whole profile object in the payload, but we 
shouldn’t do this 

• It’s important to keep the JWT small because it is sent over the wire on all 
requests 

• Since the JWT is decodable, we want to keep sensitive information out



Payload Best Practices

• What should be in the payload? 
• Basic user information 
• Nothing secret or sensitive 

• Consider providing a separate endpoint which retrieves a user profile 
object if you need a lot of profile data



Challenges

• Read the user’s profile out of the JWT payload 
• Hint: there are libraries to help! 

• Display the user’s details in a profile view



Protecting Resources



Protecting Resources

• The point of adding authentication to an app is to restrict resource access 
to users who have proven they are allowed to access those resources 

• Different levels of access 
• Publicly accessible — data is open to anyone 
• Limited to authenticated users — data is open to anyone who is logged in 
• Limited to only one authenticated user — data is open to only the user 

who is logged in 
• Limited to a subset of authenticated users — data is open to anyone of a 

particular privilege



Protecting Resources

• How do JWTs help us to protect resources? 
• We can create endpoints for our resources that require an authentication 

check 
• To pass the check, a valid JWT must be present 
• When making HTTP requests, we can send the JWT as an 
Authorization header 

• The header is read at the API and if it’s valid, the resource is accessible



Exploring the  
JWT Middleware Code



Making Authenticated Requests

• Sending authenticated requests requires retrieving the JWT from storage 
and attaching it as an Authorization header. 

• Some common ways this is implemented include: 
• Explicitly on a per-request basis 
• Globally on all requests 
• Only requests of a certain kind (method and resource type) 

• Storing JWT in a Cookie means that it goes to the server on every request



this.http.get(API_URL, headers: { ‘Authorization’: ‘Bearer ‘ + token }) 
  .map(res => res.json()) 
  .subscribe(data => console.log(data));



Authorization Schemes

• There are various schemes registered for the Authorization header 
• The Bearer scheme is borrowed from OAuth 2.0 
• Other common schemes include Basic and Digest



Challenges

• Set up the application to send the JWT in an Authorization header 
when needed 

• Make a GET request to the API for the instructors resource and display 
the list in the app 

• Make a POST request to the API to add a new instructor 
• Hint: there are libraries to help!



Protecting Routes



Client-Side Considerations

• Server resources are limited to only requests which have a valid JWT 
• But what about limiting access on the client side? 
• Some client side considerations: 

• Users should only be able to navigate to protected routes if they are 
authenticated 

• If a route requires a certain access level, users should only be able to 
navigate there if they have the appropriate scope 

• Certain UI elements should only be rendered if the above conditions are 
met



Protecting Routes

• However, protecting client side routes and UI elements has a big problem: 
it’s easy to forge 
• The user can modify the exp time or scope in their own JWT 
• We can’t verify the signature of the JWT on the client side because the 

secret can never leave the server



Protecting Routes

• But does it matter? 
• In the end, protected resources should remain on the server anyway 

• Anything in the client-side is easily visible by anyone who can use dev 
tools 

• If a savvy user manages to hack their way to a protected route (either by 
modifying their JWT or otherwise tampering with the code), they won’t be 
able to get the resources from the server



Scenario: Savvy User Modifies the JWT

• We use JavaScript to limit a route to authenticated users who also have a 
scope of admin

• A savvy user who only has a scope of user decides to modify their JWT in 
the jwt.io debugger

• They gain access to the route which is populated by resources from the 
server

• What happens?

http://jwt.io


Request with Invalid JWT



How are Client-Side Routes Protected?

• When a route transition starts, the exp time in the JWT payload is checked 
• If the JWT is expired, the transition is disallowed 

• If a route requires a certain access level, the scope in the JWT is checked 
when the route transition starts 
• If the JWT doesn’t include the desired scope, the transition is disallowed



Details Differ by Framework

• Many frameworks have their implementations for controlling route access 
• Angular 1.x - router events ($routeChangeStart, 
$stateChangeStart) 

• Angular 2 - route guards which implement a CanActivate hook 
• React (React Router) - onEnter event



export class AuthGuard implements CanActivate { 
   
  constructor(private auth: AuthService, private router: Router) {} 

  canActivate() { 
    if (this.auth.isAuthenticated()) { 
      return true; 
    } else { 
     this.router.navigate([‘login’]); 
    } 
  } 
}



Challenges

• For the instructor route, check that the user’s JWT is unexpired before 
the route transition happens 

• For the instructor/new route, check that the user’s JWT is unexpired 
and that they have a scope of admin 

• Hide the New Instructor button if the user isn’t an admin



Further Reading & Wrap-Up



Important Considerations

• Nothing is 100% secure and JWTs are no exception 
• Common attack vectors: 

• XSS (if using local storage) 
• CSRF (if using cookies) 
• MITM attacks 

• Always serve your app and API over HTTPS 
• Always escape user input and put CSRF protection in place if necessary



Important Considerations

• JWT describes how computers can communicate securely between one 
another but it doesn’t say anything about how suitable your own 
implementation might be 

• It’s up to you to make a determination about whether your implementation 
is secure 

• OAuth 2.0 and OIDC standardize authentication and authorization 
• While complex, they may be the best solution in some scenarios



Further Reading

• Auth0 Blog: https://auth0.com/blog 
• JWT Standard (RFC 7519): https://tools.ietf.org/html/rfc7519 
• OAuth 2.0 Framework (RFC 6749): https://tools.ietf.org/html/rfc6749 
• OpenID Connect: https://openid.net/connect/

https://auth0.com/blog
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6749
https://openid.net/connect/


WE     YOU!



@ryanchenkie 
@simpulton



Thanks!


