
Reactive Applications
with Angular 2

Understand how to
build fully reactive
features in Angular 2

Agenda

The Reactive Big Picture

Observables and RxJS

Immutable Operations

Reactive State and @ngrx/store

Reactive Async

Reactive Data Models

The Reactive Sample Project
• A RESTful master-detail web application that

communicates to a local REST API using json-server
• A reactive master-detail web application that uses

@ngrx/store
• We will be making the widgets feature reactive
• Feel free to use the existing code as a reference point
• Please explore! Don't be afraid to try new things!

http://bit.ly/fem-ng2-ngrx-app

http://onehungrymind.com/fem-examples/

Pre-Challenges
• Download and run the sample application
• Wire up the widgets component to the widgets-list and

widget-details components via @Input and @Output
• Connect the widgets service to communicate with

RESTful api using the HTTP module and
Observable.toPromise

The Reactive Big Picture

The Reactive Big Picture
• The Reactive Sample Project
• Angular History Lesson
• Why Reactive?
• Reactive Angular 2
• Enter Redux

Angular History Lesson

Hello Angular 1.x

Let's Get Serious

Let's Get Realistic

Two Solid Approaches

Named Routes

Directives

Components

Small Problem…

State Everywhere!

We need a better way
to manage state

What if we only had to
manage state in ONE place?

What if we could RELIABLY
push new state to our app?

What if we could
dramatically SIMPLIFY
handling user interactions?

Why Reactive?
• In the context of this workshop, reactive programming

is when we react to data being streamed to us over
time

• The atomic building block for this is the observable
object which is an extension of the Observer Pattern

Observer Pattern

Iterator Pattern

Observable Sequence

Time + Value

SINGLE MULTIPLE

SYNCHRONOUS Function Enumerable

ASYNCHRONOUS Promise Observable

SINGLE MULTIPLE

PULL Function Enumerable

PUSH Promise Observable

Value Consumption

Reactive Angular 2
• Observables are a core part of Angular 2
• Async pipes make binding to observables as easy as

binding to primitives
• Observables and immutability alleviate the burden of

change detection

this.http.get(BASE_URL) 
 .map(res => res.json()) 
 .map(payload => ({ type: 'ADD_ITEMS', payload })) 
 .subscribe(action => this.store.dispatch(action));

Observable Sequence

<div class="mdl-cell mdl-cell--6-col">  
 <items-list [items]="items | async" 
 (selected)="selectItem($event)" (deleted)="deleteItem($event)">  
 </items-list>  
</div>  
<div class="mdl-cell mdl-cell--6-col">  
 <item-detail 
 (saved)="saveItem($event)" (cancelled)="resetItem($event)" 
 [item]="selectedItem | async">Select an Item</item-detail>  
</div>

Async Pipe

+ =

Enter Redux
• Single, immutable state tree
• State flows down
• Events flow up
• No more managing parts of state in separate

controllers and services

Redux is a library but more
importantly it is a pattern

Required Viewing
Getting Started with Redux by Dan Abramov

https://egghead.io/series/getting-started-with-redux

Single State Tree

State Flows Down

Events Flows Up

All Together Now!

Demonstration

Challenges
• Download and run the sample application
• Identify the major reactive components
• Where are we using observables?
• Where are we using async pipes?

Observables and RxJS

Observables and RxJS
• Reactive with Observables
• Data Flow with Observables
• What is RxJS?
• RxJS and Observables
• Most Common RxJS Operators
• Async Pipes

Reactive with Observables
• In the observer pattern, an object (called the subject),

maintains a list of its dependents, called observers, and
notifies them automatically of any state changes,
usually by calling one of their methods.

• This represents a push strategy as opposed to a pull
(or polling) strategy

• An observer doesn’t have to constantly poll the subject
for changes, the subject “pushes” notifications to the
observer

RxJS
• What is RxJS?
• RxJS and Observables
• Most Common RxJS Operators
• RxJS Examples

What is RxJS?
• A set of libraries to compose
asynchronous and event-based
programs using observable collections

• A TON of operators that allow you
transform an observable stream

• This is generally where the learning
curve gets steep

Required Reading
Reactive Programming with RxJS

https://pragprog.com/book/smreactjs/reactive-
programming-with-rxjs

/* Get stock data somehow */ 
const source = getAsyncStockData(); 
 
const subscription = source 
 .filter(quote => quote.price > 30)  
 .map(quote => quote.price) 
 .subscribe( 
 price => console.log(`Prices higher than $30: ${price}`), 
 err => console.log(`Something went wrong: ${err.message}`)  
);  
 
/* When we're done */ 
subscription.dispose();

Basic Example

Marbles

Most Common RxJS Operators
• map
• filter
• scan
• debounce
• distinctUntilChanged
• combineLatest
• flatMap

// Array 
var numbers = [1, 2, 3]; 
var roots = numbers.map(Math.sqrt);  
// roots is now [1, 4, 9], numbers is still [1, 2, 3] 
 
// Observable 
var source = Observable.range(1, 3)  
 .map(x => x * x); 
 
var subscription = source.subscribe( 
 x => console.log('Next: ' + x), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed')); 
 
// => Next: 1 
// => Next: 4 
// => Next: 9 
// => Completed

map

// Array 
var filtered = [12, 5, 8, 130, 44].filter(x => x >= 10);  
// filtered is [12, 130, 44] 
 
// Observable 
var source = Observable.range(0, 5)  
 .filter(x => x % 2 === 0); 
 
var subscription = source.subscribe( 
 x => console.log('Next: ' + x), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed')); 
 
// => Next: 0 
// => Next: 2 
// => Next: 4 
// => Completed

filter

var source = Observable.range(1, 3)  
 .scan((acc, x) => acc + x); 
 
var subscription = source.subscribe( 
 x => console.log('Next: ' + x), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed')); 
 
// => Next: 1 
// => Next: 3 
// => Next: 6 
// => Completed

scan

var array = [ 
 800,  
 700,  
 600,  
 500 
];  
 
var source = Observable.for( 
 array, 
 function (x) { return Observable.timer(x) } 
) 
 .map(function(x, i) { return i; }) 
 .debounce(function (x) { return Observable.timer(700); }); 
 
var subscription = source.subscribe( 
 x => console.log('Next: ' + x), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed')); 
 
// => Next: 0 
// => Next: 3 
// => Completed

debounce

var source = Observable.of(42, 42, 24, 24)  
 .distinctUntilChanged(); 
 
var subscription = source.subscribe( 
 x => console.log('Next: ' + x), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed')); 
 
// => Next: 42 
// => Next: 24 
// => Completed

distinctUntilChanged

var source1 = Observable.interval(100)  
 .map(function (i) { return 'First: ' + i; }); 
 
var source2 = Observable.interval(150)  
 .map(function (i) { return 'Second: ' + i; }); 
 
// Combine latest of source1 and source2 whenever either gives a value 
var source = Observable.combineLatest( 
 source1, 
 source2 
).take(4);  
 
var subscription = source.subscribe( 
 x => console.log('Next: ' + JSON.stringify(x)), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed')); 
 
// => Next: ["First: 0","Second: 0"] 
// => Next: ["First: 1","Second: 0"] 
// => Next: ["First: 1","Second: 1"] 
// => Next: ["First: 2","Second: 1"] 
// => Completed

combineLatest

var source = Observable.range(1, 2)  
 .flatMap(function (x) { 
 return Observable.range(x, 2); 
 }); 
 
var subscription = source.subscribe( 
 x => console.log('Next: ' + x), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed')); 
 
// => Next: 1 
// => Next: 2 
// => Next: 2 
// => Next: 3 
// => Completed

flatMap

Async Pipes
• Resolves async data (observables/promises) directly in

the template
• Skips the process of having to manually subscribe to

async methods in the component and then setting
those values for the template to bind to

• No need to subscribe in the component
• We can chain any operators on the observable and

leave the template the same

@Component({ 
 selector: 'my-app',  
 template: `  
 <div> 
 <items-list [items]="items | async" 
 (selected)="selectItem($event)" (deleted)="deleteItem($event)"> 
 </items-list> 
 </div> 
 `,  
 directives: [ItemList], 
 changeDetection: ChangeDetectionStrategy.OnPush 
})  
export class App { 
 items: Observable<Array<Item>>; 
 
 constructor(private itemsService: ItemsService) { 
 this.items = itemsService.items;  
 }  
}

Async Pipes

Demonstration

Challenges
• Convert any Observable.toPromise calls to use an

observable
• Apply Observable.map to your HTTP observable stream
• Apply Observable.filter to your HTTP observable

stream

Immutable Operations

Immutable Operations
• Why Immutable?
• Avoiding Array Mutations
• Avoiding Object Mutations
• Helpful Immutable Tools

Why Immutable?
• Simplified Application Development
• No Defensive Copying
• Advanced Memoization
• Better Change Detection
• Easier to Test

Avoiding Mutations
• Array.concat
• Array.slice
• …spread
• Array.map
• Array.filter
• Object.assign

export const items = (state: any = [], {type, payload}) => { 
 switch (type) { 
 case 'ADD_ITEMS': 
 return payload; 
 case 'CREATE_ITEM':  
 return [...state, payload]; 
 case 'UPDATE_ITEM': 
 return state.map(item => { 
 return item.id === payload.id ?
 Object.assign({}, item, payload) : item; 
 }); 
 case 'DELETE_ITEM': 
 return state.filter(item => { 
 return item.id !== payload.id; 
 }); 
 default:  
 return state; 
 } 
};

Avoiding Mutations

export const items = (state: any = [], {type, payload}) => { 
 switch (type) { 
 case 'ADD_ITEMS': 
 return payload; 
 case 'CREATE_ITEM': 
 return [...state, payload]; 
 case 'UPDATE_ITEM': 
 return state.map(item => { 
 return item.id === payload.id ?
 Object.assign({}, item, payload) : item; 
 }); 
 case 'DELETE_ITEM':  
 return state.filter(item => { 
 return item.id !== payload.id;  
 }); 
 default:  
 return state; 
 } 
};

Avoiding Mutations

export const items = (state: any = [], {type, payload}) => { 
 switch (type) { 
 case 'ADD_ITEMS': 
 return payload; 
 case 'CREATE_ITEM': 
 return [...state, payload]; 
 case 'UPDATE_ITEM':  
 return state.map(item => { 
 return item.id === payload.id ?
 Object.assign({}, item, payload) : item; 
 }); 
 case 'DELETE_ITEM': 
 return state.filter(item => { 
 return item.id !== payload.id; 
 }); 
 default:  
 return state; 
 } 
};

Avoiding Mutations

Helpful Immutable Tools
• Object.freeze
• deep-freeze
• eslint-plugin-immutable
• Immutable.js
• Ramda.js

Object.freeze
The Object.freeze() method freezes an object: that is,
prevents new properties from being added to it; prevents
existing properties from being removed; and prevents
existing properties, or their enumerability, configurability,
or writability, from being changed. In essence the object
is made effectively immutable. The method returns the
object being frozen.

deep-freeze
recursively Object.freeze() objects. #micDrop

eslint-plugin-immutable
This is an ESLint plugin to disable all mutation in
JavaScript. #micDrop

eslint-plugin-immutable
This is an ESLint plugin to disable all mutation in
JavaScript. #micDrop

"This is an ESLint plugin to disable all mutation in
JavaScript. Think this is a bit too restrictive? Well if
you're using Redux and React, there isn't much
reason for your code to be mutating anything.
Redux maintains a mutable pointer to your
immutable application state, and React manages
your DOM state. Your components should be
stateless functions, translating data into Virtual
DOM objects whenever Redux emits a new state.
These ESLint rules explicitly prohibit mutation,
effectively forcing you to write code very similar to
Elm in React."

Jafar Husain

This is an ESLint plugin to disable all mutation in
JavaScript. Think this is a bit too restrictive? Well if
you're using @ngrx and Angular 2, there isn't much
reason for your code to be mutating anything.
@ngrx maintains a mutable pointer to your
immutable application state, and Angular 2
manages your DOM state. Your components should
be stateless functions, translating data into DOM
objects whenever @ngrx emits a new state. These
ESLint rules explicitly prohibit mutation, effectively
forcing you to write code very similar to Elm in
Angular 2.

Lukas and Scott

Demonstration

Challenges
• Create immutable methods in the widgets service to

create, read, update and delete the widgets collection.

Reactive State with
@ngrx/store

Reactive State
• Redux and @ngrx/store
• Store
• Reducers
• Actions
• store.select
• store.dispatch

Redux and @ngrx/store
• RxJS powered state management for Angular 2 apps

inspired by Redux
• @ngrx/store operates on the same principles as redux
• Slightly different because it uses RxJS
• That means that we can “subscribe” to our state, which

means we can use the async pipe to display our state
directly in our template

Store
• The store can be thought of as "database" of the

application
• State manipulation happens in reducers which are

registered with the store
• Takes reducers and provides an observable for the

resulting state of each one
• Store can perform pre-reducer and post-reducer

methods via middleware

Single State Tree

Single State Tree

export interface Item { 
 id: number;  
 name: string;  
 description: string;  
};  
 
export interface AppStore { 
 items: Item[]; 
 selectedItem: Item; 
};

Single State Tree

Reducers
• A method that takes the current state and an action as

parameters
• Returns the new state based on the provided action

type
• Reducer functions should be pure functions

State Flows Down

State Flows Down

export const selectedItem = (state: any = null, {type, payload}) => { 
 switch (type) { 
 case 'SELECT_ITEM':  
 return payload; 
 default:  
 return state; 
 } 
};

Reducers

provideStore
• Make your reducers available to your application by

registering them with provideStore
• You can register reducers as well as initial state for

reducers

import {App} from './src/app';  
import {provideStore} from '@ngrx/store';  
import {items} from './src/common/stores/items.store';  
import {selectedItem} from './src/common/stores/selectedItem.store';  
 
bootstrap(App, [ 
 provideStore({items, selectedItem}) 
]);

provideStore

store.select
• Returns an observable of the particular data type we

want to display
• We can use combineLatest to create a subset of

multiple data types

// items component
this.selectedItem = store.select('selectedItem');

// items template
<item-detail 
 (saved)="saveItem($event)" (cancelled)="resetItem($event)" 
 [item]="selectedItem | async">Select an Item</item-detail>

store.select

Actions
• Generally Angular 2 services that dispatch events to

the reducer
• Have a type and a payload
• Based on the action type, the reducer will take the

payload and return new state

Events Flows Up

Events Flows Up

Actions
• Generally Angular 2 services that dispatch events to

the reducer
• Have a type and a payload
• Based on the action type, the reducer will take the

payload and return new state

store.dispatch
• Sends an action to the store, which in turn calls the

appropriate reducer and updates our selected data type
• Call it straight from the component or from a service

selectItem(item: Item) { 
 this.store.dispatch({type: 'SELECT_ITEM', payload: item}); 
}

store.dispatch

Demonstration

Challenges
• Create a reducer function for a new data type
• Bootstrap it with the app by providing it to the store
• Pull the new data type into your component by

selecting it from the store
• Update the state by dispatching an action to the store
• BONUS use combineLatest to create a subset of two

different data types

Demonstration

Challenges
• Create a reducer for selectedWidget
• Register the selectedWidget reducer with the

provideStore
• Use store.select to get the currently selected widget

and display it your view
• Use store.dispatch to set the selected widget in the

selectedWidget reducer

Reactive Async

Reactive Async
• It is inevitable that we will need to perform an

asynchronous operation in our application
• We can delegate these operations in a service that is

then responsible for dispatching the appropriate event
to the reducers

Events Flows Up

@Injectable() 
export class ItemsService { 
 items: Observable<Array<Item>>; 
 
 constructor(private http: Http, private store: Store<AppStore>) { 
 this.items = store.select('items'); 
 } 
 
 loadItems() { 
 this.http.get(BASE_URL) 
 .map(res => res.json()) 
 .map(payload => ({ type: 'ADD_ITEMS', payload })) 
 .subscribe(action => this.store.dispatch(action)); 
 } 
}

Async Services

Demonstration

Challenges
• Build a widgets reducer and register it with the

application
• Create a handler in the widgets reducer to handle

getting all the widgets
• Convert the widgets service to reactively handle

fetching the widgets and dispatching the appropriate
event to the widgets reducer

Thanks!

