
Build Better Apps
with Angular 2

Understand how to
compose multiple, non-trivial
features in Angular 2

Agenda

Routing

Component Composition

Directives

Forms

Server Communication

Pipes

The Demo Application
• A RESTFUL master-detail web application that

communicates to a local REST API using json-server
• We will be building out a widgets feature
• Feel free to use the existing code as a reference point
• Please explore! Don't be afraid to try new things!

http://bit.ly/fem-ng2-rest-app

http://onehungrymind.com/fem-examples/

Challenges
• Using the items feature as a reference, create the file

structure for a widgets feature

Router

Router
• Component Router
• Navigating Routes
• Route Parameters
• Query Parameters
• Child Routes

Component Router
• Import ROUTE_PROVIDERS, ROUTE_DIRECTIVES, and

the RouteConfig decorator
• Set a base href in the head tag of your HTML like so:

<base href="/">
• Configuration is handled via a decorator function

(generally placed next to a component) by passing in
an array of route definition objects

• Use the router-outlet directive to tell Angular where you
want a route to put its template <router-outlet></
router-outlet>

@RouteConfig([ 
 {path: '/home', name: 'Home', component: HomeComponent, useAsDefault: true}, 
 {path: '/about', name: 'About', component: AboutComponent}, 
 {path: '/experiments', name: 'Experiments', component: ExperimentsComponent} 
])  
export class AppComponent {}

@RouteConfig

<div id="container">  
 <router-outlet></router-outlet>  
</div>

RouterOutlet

Navigating Routes
• Add a routerLink attribute directive to an anchor tag
• Bind it to a template expression that returns an array of

route link parameters <a [routerLink]="['Users']">
Users

• Navigate imperatively by importing Router, injecting it,
and then calling .navigate() from within a component
method

• We pass the same array of parameters as we would to
the routerLink directive this._router.navigate(['Users']);

<div id="menu">  
 <a [routerLink]="['/Home']" class="btn">Home  
 <a [routerLink]="['/About']" class="btn">About  
 <a [routerLink]="['/Experiments']" class="btn">Experiments  
</div>

RouterLink

export class App { 
 constructor(private _router: Router) {} 
 navigate(route) { 
 this._router.navigate([`/${route}`]); 
 } 
}

Router.navigate

Query Parameters
• Denotes an optional value for a particular route
• Do not add query parameters to the route definition

{ path:'/users', name: UserDetail, component:
UserDetail }

• Add as a parameter to the routerLink template
expression just like router params: <a
[routerLink]="['Users', {id: 7}]"> {{user.name}}

• Also accessed by injecting RouteParams into a
component

<div>  
 <button [routerLink]="['./MyComponent', {id: 1}]">  
 My Component Link</button>  
 <button [routerLink]="['./AnotherComponent', {queryParam: 'bar'}]">  
 Another Component Link</button>  
</div>

QueryParam

import { Component } from 'angular2/core';  
import { RouteParams } from 'angular2/router';  
 
@Component({ 
 selector: 'my-component',  
 template: `<h1>my component ({{routeParams.get('id')}})!</h1>  ̀
})  
 
export class MyComponent { 
 constructor(routeParams: RouteParams) { 
 this.routeParams = routeParams; 
 } 
}

RouteParams

Child Routes
• Ideal for creating reusable components
• Components with child routes are “ignorant” of the

parents’ route implementation
• In the parent route config, end the path with /…
• In the child config, set the path relative to the parent

path
• If more than one child route, make sure to set the

default route

@RouteConfig([ 
 { 
 path:'/another-component/...',  
 name: 'AnotherComponent',  
 component: AnotherComponent 
 } 
])  
export class App {}

@RouteConfig([ 
 { 
 path:'/first',  
 name: 'FirstChild',  
 component: FirstSubComponent 
 } 
])  
export class AnotherComponent {}

Child Routes

Demonstration

Challenges
• Create a route to the widgets feature
• Use routeLink to navigate to the widgets feature
• Create a method in the items component that

imperatively navigates to that route
• Add both route parameters and query parameters to

the widgets route

Component Composition

Component Composition
• Component System Architecture
• Clear contract with @Input and @Output
• @Input
• @Output
• Smart Components and Dumb Components
• View Encapsulation

Angular History Lesson

Hello Angular 1.x

Let's Get Serious

Let's Get Realistic

Two Solid Approaches

Named Routes

Directives

Components

Component System Architecture
• Components are small, encapsulated pieces of

software that can be reused in many different contexts
• Angular 2 strongly encourages the component

architecture by making it easy (and necessary) to build
out every feature of an app as a component

• Angular components contain their own templates,
styles, and logic so that they can easily be ported
elsewhere

Data Binding

Custom Data Binding

Component Contracts
• Represents an agreement between the software

developer and software user – or the supplier and the
consumer

• Inputs and Outputs define the interface of a component
• These then act as a contract to any component that

wants to consume it
• Also act as a visual aid so that we can infer what a

component does just by looking at its inputs and
outputs

Component Contract

<div>  
 <item-detail 
 (saved)="saveItem($event)"
 (cancelled)="resetItem($event)" 
 [item]="selectedItem">Select an Item</item-detail>  
</div>

Component Contract

@Input
• Allows data to flow from a parent component to a child

component
• Defined inside a component via the @Input decorator:

@Input() someValue: string;
• Bind in parent template: <component

[someValue]="value"></component>
• We can alias inputs: @Input('alias') someValue: string;

import { Component, Input } from 'angular2/core';  
 
@Component({ 
 selector: 'my-component',  
 template: `  
 <div>Greeting from parent:</div> 
 <div>{{greeting}}</div> 
  ̀
})  
 
export class MyComponent { 
 @Input() greeting: String = 'Default Greeting';  
}

@Input

import { Component } from 'angular2/core';  
import { MyComponent } from './components/my.component';  
 
@Component({ 
 selector: 'app',  
 template: `  
 <my-component [greeting]="greeting"></my-component> 
 <my-component></my-component> 
 `,  
 directives: [MyComponent] 
})  
 
export class App { 
 greeting: String = 'Hello child!';  
}

@Input

@Output
• Exposes an EventEmitter property that emits events to

the parent component
• Defined inside a component via the @Output decorator:

@Output() showValue: new EventEmitter<boolean>;
• Bind in parent template: <cmp

(someValue)="handleValue()"></cmp>

import { Component, Output, EventEmitter } from 'angular2/core';  
 
@Component({ 
 selector: 'my-component',  
 template: `<button (click)="greet()">Greet Me</button>  ̀
})  
 
export class MyComponent { 
 @Output() greeter: EventEmitter = new EventEmitter(); 
 
 greet() { 
 this.greeter.emit('Child greeting emitted!');  
 } 
}

@Output

 
@Component({ 
 selector: 'app',  
 template: `  
 <div> 
 <h1>{{greeting}}</h1> 
 <my-component (greeter)="greet($event)"></my-component> 
 </div> 
 `,  
 directives: [MyComponent] 
})  
 
export class App { 
 greet(event) { 
 this.greeting = event; 
 } 
}

@Output

Smart and Dumb Components
• Smart components are connected to services
• They know how to load their own data, and how to

persist changes
• Dumb components are fully defined by their bindings
• All the data goes in as inputs, and every change comes

out as an output
• Create as few smart components/many dumb

components as possible

export class ItemsList { 
 @Input() items: Item[]; 
 @Output() selected = new EventEmitter(); 
 @Output() deleted = new EventEmitter(); 
}

Dumb Component

export class App implements OnInit { 
 items: Array<Item>; 
 selectedItem: Item; 
 
 constructor(private itemsService: ItemsService) {} 
 
 ngOnInit() { } 
 
 resetItem() { } 
 
 selectItem(item: Item) { } 
 
 saveItem(item: Item) { } 
 
 replaceItem(item: Item) { } 
 
 pushItem(item: Item) { } 
 
 deleteItem(item: Item) { } 
}

Smart Component

View Encapsulation
• Allows styles to be scoped only to one single component
• There are three types of view encapsulation in Angular 2
• ViewEncapsulation.None: styles are global like any other

HTML document
• ViewEncapsulation.Emulated: style scope is mimicked by

adding attributes to the elements in each components’
template

• ViewEncapsulation.Native: uses the Shadow DOM to insert
styles

Demonstration

Challenges
• Create a dumb widgets-list and item-details

component using @Input and @Output
• Create a widgets service and hardcode a widgets

collection
• Consume the collection in the widgets component and

pass it to the widgets-list component
• Select a widget from the widgets-list
• Display the selected widget in item-details

Directives

Directives
• What is a Directive?
• Attribute Directives
• Structural Directives
• Custom Directives
• Accessing the DOM

What is a Directives?
• A directive is responsible for modifying a dynamic

template
• A component is a specific kind of directive with a

template
• For the sake of conversation… a directive is a

component without a template

Structural and Attribute
Directives

Creating a Directive

Creating a Structural
Directive

Accessing the DOM
• First import ElementRef: import { ElementRef } from

'angular2/core'
• Then inject it into the directive class constructor:

constructor(el: ElementRef) {}
• Access properties directly on the directive’s DOM

element by using element.nativeElement.property:
el.nativeElement.style.backgroundColor = 'yellow';

 or
 el.nativeElement.innerText = 'Some Text';

export class FemBlinker { 
 constructor(private _element: ElementRef) { 
 let interval = setInterval(() => { 
 let color = _element.nativeElement.style.color; 
 _element.nativeElement.style.color 
 = (color === '' || color === 'black') ? 'red' : 'black';  
 }, 300); 
 
 setTimeout(() => { 
 clearInterval(interval); 
 }, 10000);  
 } 
}

Accessing the DOM

Demonstration

Challenges
• Pending

Forms

Forms
• ngModel
• ngSubmit
• FormBuilder
• Validation

ngModel
• Implements Angular’s two-way binding syntax e.g.

[(ngModel)]
• One of the few directives that actually uses two-way

data binding
• Allows us to bind inputs to a model defined by an

interface in TypeScript Interface: export interface User {
id: number; name: string; };

• Component: class UserCmp { user: User }
• HTML: <input type="text" [(ngModel)]="user.name" />

Binding data to an Input

Getting an Input's State

Get State from a
Group of Inputs

Leveraging formControls
and formGroups

FormBuilder

ngSubmit
• Just like any other event binding
• Binds to the native submit event (generally by clicking

a button with type of submit or by pressing enter)
• When form is submitted, calls whatever component

method we pass it

Submitting a Form

Validation
• Set a local template variable to the value ngForm
• Angular resets the local template variable to the

ngControl directive instance. In other words, the local
template variable becomes a handle on the ngControl
object for this input box.

<input type="text" required [(ngModel)]="user.name"
ngControl="name" #name="ngForm" >
<div [hidden]="name.valid || name.pristine" class="alert
alert-danger">Name is required</div>

Custom Validators

Challenges
• Create a form for widget-details
• Bind the form to a widget object sent in via @Input
• Submit the details of the form to the parent component
• BONUS Add in a custom validator

Server Communication

Server Communication
• The HTTP Module
• Methods
• Observable.toPromise
• Error Handling
• Header

The HTTP Module
Simplifies usage of the XHR and JSONP APIs
API conveniently matches RESTful verbs
Returns an observable

The HTTP Module Methods
request: performs any type of http request
get: performs a request with GET http method
post: performs a request with POST http method
put: performs a request with PUT http method
delete: performs a request with DELETE http method
patch: performs a request with PATCH http method
head: performs a request with HEAD http method

loadItems() { 
 return this.http.get(BASE_URL) 
 .map(res => res.json()) 
 .toPromise(); 
}  
 
createItem(item: Item) { 
 return this.http.post(`${BASE_URL}`, JSON.stringify(item), HEADER) 
 .map(res => res.json()) 
 .toPromise(); 
}

HTTP Methods

updateItem(item: Item) { 
 return this.http.put(`${BASE_URL}${item.id}`,
 JSON.stringify(item), HEADER) 
 .map(res => res.json()) 
 .toPromise(); 
}  
 
deleteItem(item: Item) { 
 return this.http.delete(`${BASE_URL}${item.id}`)  
 .map(res => res.json()) 
 .toPromise(); 
}

HTTP Methods

What is an Observable
• A lazy event stream which can emit zero or more

events
• Composed of subjects and observers
• A subject performs some logic and notifies the

observer at the appropriate times

Observable vs Promise
• Observables are lazy – they do not run unless

subscribed to while promises run no matter what
• Observables can define both setup and teardown

aspects of asynchronous behavior
• Observables are cancellable
• Observables can be retried, while a caller must have

access to the original function that returned the
promise in order to retry

Observable.subscribe
We finalize an observable stream by subscribing to it
The subscribe method accepts three event handlers
onNext is called when new data arrives
onError is called when an error is thrown
onComplete is called when the stream is completed

source.subscribe( 
 x => console.log('Next: ' + x), 
 err => console.log('Error: ' + err), 
 () => console.log('Completed'));

Observable.subscribe

Observable.toPromise
Diving into observables can be intimidating
We can chain any HTTP method (or any observable for
that matter) with toPromise
Then we can use .then and .catch to resolve the promise
as always
this.http.get('users.json')
 .toPromise()
 .then(res => res.json().data)
 .then(users => this.users = users)
 .catch(this.handleError);

export interface Item { 
 id: number;  
 name: string;  
 description: string;  
};  
 
export interface AppStore { 
 items: Item[]; 
 selectedItem: Item; 
};

Code Sample

Error Handling
We should always handle errors
Chain the .catch method on an observable
Pass in a callback with a single error argument

this.http.get('users.json')
 .catch(error => {
 console.error(error);
 return Observable.throw(error.json().error || 'Server error');
 });

getItems() { 
 return this._http.get('fileDoesNotExist.json')  
 .map(result => result.json()) 
 .catch(this.handleError); 
}  
 
private handleError (error: Response) { 
 console.error(error); 
 return Observable.throw(error.json().error || 'Server error'); 
}

Observable.catch

Headers
Import Headers and RequestOptions:
import {Headers, RequestOptions} from 'angular2/http';

Headers are an instance of the Headers class
Pass in an object with each header as a key-value pair
Then pass this Headers instance into a new RequestOptions
instance

let headers = new Headers({ 'Content-Type': 'application/json' });
let options = new RequestOptions({ headers: headers });
this.http.post('users.json', '{}', options);

Demonstration

Challenges
• Create a method inside the service that uses HTTP to

get widgets.json
• Return that method from the service and subscribe to it

in the component so you can display the data inside
the component’s template

• Change the method to use promises and update the
component accordingly

• BONUS create another method that POSTs to
widgets.json

Pipes

Pipes
• What are Pipes?
• Built-in Pipes
• Custom Pipes
• Async Pipes

What are Pipes?
A pipe takes in data as input and transforms it to a desired
output

We use them in our templates with interpolation:
<p>User created on {{ created_at | date }}</p>

Include parameters to a pipe by separating them with a colon:
<p>User created on {{ created_at | date:"MM/dd/yy" }}</p>

Pipes are chain-able:
<p>User created on {{ created_at | date | uppercase }}</p>

Built-in Pipes
DatePipe
<p>User created on {{ user.created_at | date }}</p>
UpperCasePipe
<p>Middle Initial: {{ user.middle | uppercase }}</p>
LowerCasePipe
<p>Username: {{ user.username | lowercase }}</p>
CurrencyPipe
<p>Price Plan: {{ user.plan.price | currency }}</p>
PercentPipe
<p>Data Usage: {{ user.usage | percent }}</p>

Custom Pipes
Import the pipe decorator and PipeTransform interface:
import { Pipe, PipeTransform } from 'angular2/core';

Create a class that implements the PipeTransform interface
and includes a transform method:
export class ReversePipe implements PipeTransform {
 transform(value:string, args:string[]) : any {
 return value.reverse();
 }
}

Async Pipe
Resolves async data (observables/promises) directly in the template

Skips the process of having to manually subscribe to async methods
in the component and then setting those values for the template to
bind to

Component attribute:
asyncAttribute<string> = new Promise((resolve, reject) => {
 setTimeout(() => resolve('Promise resolved'), 500);
})

Template: <p>Async result: {{asyncAttribute | async}}</p>

Demonstration

Challenges
• Use two or more built-in pipes to transform data in the

template
• Create a custom pipe that filters an array of strings

based on a particular letter
• Create an asynchronous method or attribute on the

component and bind to it in the template

Thanks!

